
www.OpenSourceForU.com | OPEN SOURCE FOR YOU | aPRil 2020 | 97

DevelopersHow To

Building a Website Blocker
Extension in Minutes

This tutorial
explains how you
can build a website
blocker extension
that will run on
multiple browsers.

W
eb browsers have become integral to our
lives, and are used on a wide range of devices,
including desktops, laptops, tablets and
smartphones. In 2019, an estimated 4.3 billion

people used Web browsers. The most used browser today is
Google Chrome, with a 64 per cent global market share across
all devices, followed by Apple Safari with 17 per cent.

A few popular Web browsers
 � Google Chrome: This popular cross-platform Web

browser has been developed by Google. It was first
released in 2008 for the Windows platform and was
later ported to Linux, MacOS, iOS and Android. You
can download Google Chrome from https://www.
google.com/chrome/.

 � Opera: This is a freeware browser for Windows, Android,
iOS, MacOS and Linux, developed by Opera Software. It is
a Chromium based browser using the Blink layout engine.
What differentiates it from other browsers is a unique user
interface, and a few other features. You can download
Opera from https://www.opera.com/hi/download.

 � Brave: This is a free and open source Web browser
developed by Brave Software Inc., based on the Chromium
framework. This browser has ad-blocking and website
tracker-blocking features inbuilt. It also allows users to send
cryptocurrency contributions in the form of Basic Attention

Tokens to websites and content creators. You can download
Brave from https://brave.com/download/.

 � Microsoft Edge: This is a Web browser developed by
Microsoft. It was rebuilt as a Chromium based browser in
2019. It is also available for Windows, Android, iOS and
MacOS. You can download Microsoft Edge from https://
www.microsoft.com/en-us/edge.

What is a browser extension?
A browser extension is a small software module that
customises or adds extra functionality to the browser.
This extension enhances or adds some extra features to
the browser. The extensions are mostly written using Web
technologies like HTML, JavaScript and CSS. They are
hosted on vendor specific stores. For example, Chrome
extensions are hosted on the Chrome Web Store, Mozilla
Firefox hosts its extensions on its extension store, and so
on. Users can go to the store of the browser they are using
to download and install any of the wide variety of browser
extensions available there.

Creating an extension
We are now going to build a website blocker extension,
which will run on multiple Web browsers (Google Chrome,
Opera, Brave and Microsoft Edge). This extension will
allow users to block websites in a browser. Users can add

98 | aPRil 2020 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Developers How To

the website they want to block to the list. When they try
to visit that site, a message that states that the website is
blocked will be displayed, and access to it will be denied. If
the users then want to visit the site, they will have to unblock
it by deleting the website entry from the list of blocked
sites in the extension.

We are going the use the following Web technologies to
build this extension:
 � HTML to create a table to view blocked sites, and buttons

to add and delete them
 � CSS to style HTML
 � JavaScript (Chrome browser API) to write our logic

Setting up the development environment
Let us now set up the file structure for our browser extension.
Create a new folder and give it a name, say ‘web-blocker’.
Now, inside that folder, create the following empty files:
 � manifest.json
 � options.html
 � script.js
 � block.js
 � style.css

You should end up with the directory structure shown in
Figure 1.
 � manifest.json is a metadata file in JSON format. It

contains basic information about the extension, like its
name, a description of it, the version number, which script
it should run on starting up, etc.

 � options.html displays the UI of the extension, like the
list of websites to be blocked, buttons to add and delete,
websites from the list, etc.

 � script.js controls the interactions and the logic of the
options.html file.

 � block.js: In this file we are going to intercept the outgoing
request from the browser. If the request contains one
of the blocked websites from the list, we will reject the
request, thus blocking that website.

 � style.css adds styles to the options.html page to
make it look good.

Creating the manifest file
Open the manifest.json file and copy the following
JSON code:

{

 “name”: “Website Blocker”,

 “version”: “1.0.0”,

 “description”: “Blocks websites based on domain names”,

 “background”: { “scripts”: [“block.js”] },

 “options_page”: “options.html”,

 “permissions”: [

 “webRequest”, “webRequestBlocking”,

 “http://*/*”, “https://*/*”,

 “storage”

],

 “manifest_version”: 2

}

As you can see, this code is in JSON format. It consists
of general information about the browser extension, such as
its version, name, description, permissions required for the
extension, and so on.

The parameter description is as follows:
 � manifest_version specifies the version of the manifest; the

value must be 2
 � name specifies the name of the extension
 � version specifies the version of the extension
 � description specifies a short description of the extension
 � background specifies that the script block.js should load as

soon as the user starts the browser
 � options_page specifies the UI page to be displayed for

extension options
 � permission specifies which browser APIs are to be

used. We are using webRequest, webRequestBlocking,
https://*/*, http://*/* and storage

 Note: It is assumed that you have some basic
knowledge of Web technologies like HTML, CSS
and JavaScript. If you don’t, W3Schools (http://www.
w3schools.com/) is a good place to start. The site has some
great tutorials for Web technologies that are easy to follow.

To add HTML, open the options.html file located in the
extension directory, and add the following HTML code:Figure 1: Extension project file structure

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | aPRil 2020 | 99

DevelopersHow To

 width: 300px;

 padding: 10px;

 margin: 10px;

 border-radius: 4px;

 outline: none;

 border: 1px solid #eee;

}

#add {

 border: none;

 border-radius: 50%;

 background-color: #0081cb;

 color: #ffffff;

 cursor: pointer;

 width: 26px;

 height: 26px;

 cursor: pointer;

}

.delete {

 border: none;

 border-radius: 50%;

 background-color: #e6463b;

 color: #ffffff;

 cursor: pointer;

 width: 26px;

 height: 26px;

 cursor: pointer;

 float: right;

 margin-right: 6px;

 margin-top: 10px;

}

table {

 height: auto;

 width: 388px;

}

table tr th {

 border-bottom: 1px solid #0081cb;

 padding: 5px;

}

table td {

 padding: 8px;

 line-height: 32px;

 width: 100%;

}

table td {

 border-bottom: 1px solid #e2e2e2;

}

<!DOCTYPE html>

<html>

<head>

 <meta charset=”utf-8”>

 <meta http-equiv=”X-UA-Compatible” content=”IE=edge”>

 <title></title>

 <meta name=”description” content=””>

 <meta name=”viewport” content=”width=device-width,

initial-scale=1”>

 <link rel=”stylesheet” href=”style.css”>

</head>

<body>

 <div class=”header”>

 <input class=”add-website” type=”url”

placeholder=”Enter Website e.g: https://www.example.com”>

 <button id=”add”>+</button>

 </div>

 <div class=”main”>

 <table>

 <tr>

 <th>Websites Blocked</th>

 </tr>

 <tr id=”no-website-msg”>

 <td>No websites blocked yet.</td>

 </tr>

 </table>

 </div>

 <script src=”script.js” defer></script>

</body>

</html>

In the above HTML code, we have added the following
elements:
 � <input> - The user will enter the website to be blocked in

this input field
 � <button> - To add and delete websites added to the list
 � <table> - To display the list of blocked/added websites

To add CSS styles, use the following code:

body {

 font-family: ‘Segoe UI’, Tahoma, Geneva, Verdana, sans-

serif;

 margin: 0;

 padding: 0;

 box-sizing: border-box;

 display: flex;

 justify-content: center;

 align-items: center;

 flex-direction: column;

}

.add-website {

100 | aPRil 2020 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Developers How To

This CSS will style the UI as shown in Figure 2.
To add JavaScript, open the script.js file and copy the

following JavaScript code:

let urls = []; // Global variable to store URLs

// Load init when the content is loaded.

window.addEventListener(‘DOMContentLoaded’, init);

window.addEventListener(‘DOMContentLoaded’, loadList);

//Init Function - Initialize, load, addEventListeners

function init() {

 const addButton = document.getElementById(‘add’);

 const deleteButton = document.getElementsByClassName(‘de

lete’);

 const noWebsiteMsg = document.getElementById(‘no-website-

msg’);

 chrome.storage.local.getBytesInUse([‘websites’], function

(bytes) {

 if (bytes) {

 chrome.storage.local.get(“websites”, function

(res) {

 if (res != {}) {

 urls = JSON.parse(res.websites);

 if (urls == undefined || urls.length ==

0) {

 noWebsiteMsg.style.display = “”;

 } else {

 noWebsiteMsg.style.display = “none”;

 }

 if (deleteButton) {

 for (let i = 0; i < deleteButton.

length; i++) {

 deleteButton[i].

addEventListener(‘click’, function (e) {

 deleteWebsite(e);

 });

 }

 }

 }

 });

 } else {

 urls = [];

 }

 });

 addButton.addEventListener(‘click’, function () {

 const url = document.getElementsByClassName(‘add-

website’)[0].value;

 if (url.length > 0) {

 noWebsiteMsg.style.display = “none”;

 urls.push(url + “/*”);

 chrome.storage.local.set({

 “websites”: JSON.stringify(urls)

 }, function (value) {

 console.log(value);

 });

 save();

 loadList();

 document.getElementsByClassName(‘add-website’)

[0].value = “”;

 }

 });

}

function loadList() {

 const deleteButton = document.getElementsByClassName(‘de

lete’);

 const tblNode = document.getElementsByTagName(‘body’)[0];

 let tblRow = document.createElement(‘tr’);

 let tblData = document.createElement(‘td’);

 let tblButton = document.createElement(‘button’);

 let storedURLs = [];

 chrome.storage.local.getBytesInUse([‘websites’], function

(bytes) {

 if (bytes) {

 chrome.storage.local.get(“websites”, function

(res) {

 if (res != {}) {

 storedURLs = JSON.parse(res.websites);

 if (storedURLs != undefined || storedURLs

!= []) {

 for (let i = 0; i < storedURLs.

length; i++) {

 tblButton.innerText = “-”;

 tblButton.setAttribute(‘class’,

‘delete’);

 tblRow.setAttribute(‘id’, “row” + i);

 tblButton.setAttribute(‘id’, i);

 tblData.innerText =

storedURLs[i];

 tblRow.appendChild(tblData);

 tblRow.appendChild(tblButton);

Figure 2: Website blocker user interface

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | aPRil 2020 | 101

DevelopersHow To

 document.

getElementsByTagName(‘table’)[0].appendChild(tblRow);

 if (deleteButton) {

 deleteButton[i].

addEventListener(‘click’, function (e) {

 deleteWebsite(e);

 });

 }

 }

 }

 }

 });

 } else {

 storedURLs = [];

 }

 });

}

function deleteWebsite(e) {

 urls.splice(e.target.id, 1);

 chrome.storage.local.set({

 “websites”: JSON.stringify(urls)

 }, function () {});

 if (document.getElementById(“row” + e.target.id))

 document.getElementById(“row” + e.target.id).

remove();

 save();

 init();

}

function save() {

 chrome.extension.sendRequest({

 urls: “save”

 }, function (response) {

 });

}

Here, we have declared four functions: init(), loadList(),
deleteWebsite() and save().
 � init() initialises all the HTML elements, and here we can

also add event listeners for buttons
 � loadList() loads the list of websites we have added/deleted

to and from the list
 � deleteWebsite() deletes the website from the list
 � save() saves the websites we have added to the list, into

storage

We have used Chrome’s storage API to store the website
list.

Now open the block.js file and copy the following
JavaScript code:

function blockRequest() {

 return {

 cancel: true

 };

}

chrome.extension.onRequest.addListener(

 function (request, sender, sendResponse) {

 if (request.urls == ‘save’) {

 let getStoredURLs = [];

 chrome.storage.local.getBytesInUse(‘websites’,

function (bytes) {

 if (bytes) {

 chrome.storage.local.get(“websites”,

function (res) {

 if (res != {}) {

 getStoredURLs = JSON.parse(res.

websites);

 if (getStoredURLs.length > 0) {

 const filter = {

 urls: getStoredURLs,

 };

 chrome.webRequest.

onBeforeRequest.addListener(

 blockRequest,

 filter, [“blocking”]

);

 } else if (getStoredURLs.length

== 0) {

 if (chrome.webRequest.

onBeforeRequest.hasListener(blockRequest)) {

 chrome.webRequest.

onBeforeRequest.removeListener(blockRequest);

 }

 }

 }

 });

 } else {

 getStoredURLs = false;

 }

 });

 }

 }

);

Here, we intercept the Web request made using chrome.

102 | aPRil 2020 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Developers How To

webRequest.onBeforeRequest API and check if it matches the
list of websites that we have stored. If it does, we block the
request; else, we allow it.

Loading the extension
First, let us load the extension in the Chrome browser.
1. Open up the Chrome menu by clicking the icon that’s to

the right of the address bar and select Extensions under
the Tools menu or just enter chrome://extensions in the
address bar before hitting Enter, as shown in Figure 3.

2. Check the Developer mode checkbox in the top right-hand

corner, if it hasn’t been checked.
3. Now, click on Load unpacked, which will open up the file-

selection dialogue box, as shown in Figure 4.
4. Navigate to the directory where your extension files

are and select it. Another easy way is to simply drag
and drop the extension folder onto chrome://extensions
in your browser to load it. The extension will install/
load right away. If you make some errors while creating
the extension, it will not load and will display an error
message at the top of the page. You have to rectify the
error and then try again.

Figure 3: Extension loader interface to load/unload extensions

Figure 4: Folder selection dialogue box to select our extension

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | aPRil 2020 | 103

DevelopersHow To

the context menu. Then select Options, which will open the
options page. Here you can add the website you want to
block. As an example, I added https://www.facebook.com
to the list, as shown in Figure 6; so as soon as I try to visit
https://www.facebook.com, the request gets blocked and a
message is displayed, as shown in Figure 7. Now, the website
is blocked, unless I delete it from the list.

Testing the extension in the Opera, Brave and
Microsoft Edge browsers
In Opera, navigate to opera://extensions. In Brave, navigate to
brave://extensions and in Edge, navigate to edge://extensions.
Then, enable Developer Mode and follow the same steps that
you did for Google Chrome.

 Note: You can also refer to and download this project’s
source code from my GitHub repository. Visit https://
github.com/aniketkudale/website-blocker.

Running the extension
After installing/loading the extension, you can test it by
right-clicking the extension icon shown at the top-right corner
near the address bar, as shown in Figure 5. This will show

Figure 5: Our extension in the top-right corner of the browser

Figure 6: Website blocker list shown by the extension

Figure 7: The extension blocking the request to a website

The author is a senior member of the technical staff at TIBCO
Software Inc., Pune, with more than five years’ experience. His
interests include Web technologies, computer vision and security.

 By: Aniket Eknath Kudale

[1] https://www.google.com/chrome/
[2] https://developer.chrome.com/extensions/api_index

 References

