
76 | september 2016 | OpeN sOUrCe FOr YOU | www.OpensourceForU.com www.OpensourceForU.com | OpeN sOUrCe FOr YOU | september 2016 | 77

Developers How To

 The Express.js framework is the most popular and widely used framework for Node.js,
while Bootstrap is the frontrunner in the development of responsive, mobile first Web

applications on the Net. This article presents a tutorial on how to create a website
using the two popular open source frameworks.

Bootstrap is an open source, free and popular front-end
framework that’s used to design websites and Web
applications. It contains HTML and CSS based design

templates for buttons, navigation, forms, typography, other
interface components and also optional JavaScript extensions.
Bootstrap mainly focuses on the front-end development of
Web applications.

The Bootstrap framework is also the second most popular
project on GitHub, with over 99,000 stars and over 44,000
forks at the time of writing this article. It has some great
features, which are explored further in this article.

Browser compatibility: Bootstrap is compatible with all
the latest and popular versions of Web browsers, such as Google
Chrome, Safari, Opera, Internet Explorer and Mozilla Firefox.

Responsive Web design: Bootstrap version 2.0 onwards
has support for responsive Web design, which allows the
layout of the Web pages to be adjusted dynamically, depending
upon the characteristics of the device used – whether it is a
desktop, mobile phone or tablet. From version 3.0 onwards,
Bootstrap has adopted a mobile-first-design philosophy, which
basically emphasises responsive design, by default.

Style sheets: Bootstrap offers a set of style sheets that

provide basic style definitions for all key HTML elements
or components. These basic style definitions provide a
uniform, modern appearance for formatting text, tables and
form elements.

Reusable components: Bootstrap also contains other
commonly used interface elements. These are reusable
components that are implemented as CSS classes, which
can be applied to certain HTML elements in a Web page.

JavaScript components: Bootstrap has several
JavaScript components in the form of jQuery plugins. These
JavaScript components provide some additional user interface
elements such as alert boxes, tooltips and carousels, and also
extend the functionality of some existing interface elements
like the auto-complete function for the input fields.

SASS and Flexbox support: The Bootstrap version
4.0 alpha release has SASS and Flexbox support. SASS
(Syntactically Awesome Style Sheets) is a scripting
language that is interpreted into Cascading Style Sheets.
Flexbox, also known as CSS Flex Box Layout, is a CSS3
Web layout model which allows responsive elements within
a container to automatically arrange themselves according
to different screen sizes and devices.

Build a Website Using Bootstrap
and the Express.js Framework

76 | september 2016 | OpeN sOUrCe FOr YOU | www.OpensourceForU.com www.OpensourceForU.com | OpeN sOUrCe FOr YOU | september 2016 | 77

DevelopersHow To

 Tip: The Bootstrap framework is open source and
the source code of the framework is available on GitHub.
Developers/programmers are encouraged to participate and
contribute to the project.

Express.js framework
Express.js or Express is a Web application framework for
Node.js designed for building Web applications and APIs.
It is the de facto standard server framework for Node.
js. Express is also the back-end part of the MEAN stack,
together with the MongoDB database and the AngularJS
front-end framework.

Some of the salient features of the Express.js framework are:
 � It’s a cross-platform framework, which means it is not

limited to one OS.
 � It is a server-side Web and mobile application framework

written in JavaScript.
 � It provides Express Generator, which allows you to create

complex applications quickly.
 � It supports the MVC pattern.
 � Express.js comes with two template engines, Jade and

EJS, which facilitate the flow of data into the structure of
a website.

 � It has a provision for building single-page, multi-page and
hybrid Web and mobile applications, as well as APIs or
Application Programming Interfaces.

Installing Node.js
Express.js is a Node.js based framework, so Node.js must be
installed first. Download and install Node.js (https://nodejs.
org/). Express.js is distributed as an npm package, so we will
use Node and npm to install Express.js.

Building a website
Let us build a website using these two frameworks –
Bootstrap and Express.js.

We will use open source programming languages
like HTML, CSS and JavaScript along with these two
frameworks, to create a website.

 Note: It is assumed that you have a basic knowledge of
Web technologies like HTML, CSS and JavaScript. If you
don’t, W3Schools (http://www.w3schools.com/) is a good
place to start. The site has some great tutorials for Web
technologies which are easy to follow.

First, let’s create a folder/directory for our website.
Open the command prompt/terminal and type the following
command:

C:>mkdir project

This command creates a folder called project:

C:>cd project

This command will make project your working directory.
Now, use the npm init command to create a very

important package.json file for the website/ application. Run
the following command in the newly created folder, i.e., the
project folder:

C:\project>npm init

This command prompts you to enter certain fields, such as
name, version of your website or application. You can either
hit the Enter key and accept the default setting or enter the
details you want, with the following exception:

Entry point: (index.js)

At this point, you will be asked to enter the entry point file
name. If you hit Enter, it will set the index.js file as the entry
point, by default. But for this tutorial, we are going to give it a
new name. Let’s name it website.js. Type website.js and press
the Enter key.

Now, let us install Express in the project directory and
save it in the dependencies list. Run the following command
in the project folder:

C:\project>npm install express –save

The above command will install all the important Express
modules, and save the dependencies in the package.json file.

The package.json file will look like what follows:

{

 “name”: “project”,

 “version”: “1.0.0”,

 “description”: “Sample Project”,

 “main”: “website.js”,

 “scripts”: {

 “test”: “echo \”Error: no test specified\” && exit 1”

 },

 “author”: “AniketKudale”,

 “license”: “ISC”

}

Here’s a description of the code snippet given above.
 � name: Name of the Web application.
 � version: Version of the Web application.
 � description: Description of the Web application.
 � main: Main entry point of the Web application; in this file,

we store our application logic.
 � scripts: Here, we specify script commands that run at

various intervals in the life cycle of our package.
 � author: Here, we specify the author’s name, i.e.,

your name.
 � license: Here, we can specify the licence type.

The Express.js framework has now been successfully

78 | september 2016 | OpeN sOUrCe FOr YOU | www.OpensourceForU.com www.OpensourceForU.com | OpeN sOUrCe FOr YOU | september 2016 | 79

Developers How To

installed; so let us test it by creating a sample ‘Hello
World’ example.

In our project directory, create a file named website.js and
add the following code:

var express = require(‘express’);

var app = express();

app.get(‘/’, function (req, res) {

res.send(‘<h1>Open Source For You!</h1>’);

});

app.listen(3000, function () {

console.log(‘Example app listening on port 3000!’);

});

The above code starts a server and listens on port 3000 for
connections. It also responds with the text ‘Open Source For
You!’ in the header 1 HTML formatting for requests made to
the root URL (/), and for every other path, it will respond with
a message ‘404 Not Found’.

To execute, run the following command in the project folder:

C:\project>node website.js

Then, load http://localhost:3000/ in the browser to
see the output.

If you see the text printed in the browser, as shown in
Figure 1, then you are all set for creating a website using
Bootstrap and Express.js.

Creating a website
We are going to use Bootstrap and basic HTML for the view, and
the Express.js framework as a Web server and to handle routes.

You can download all the necessary Bootstrap files from
http://getbootstrap.com/ or you can use files from CDN
(Content Delivery Network).

For our sample website, we are going to use Bootstrap
files from CDN.

Let’s start by creating views first; our website will have
three Web pages.
1. index.html: Index page of our sample website.
2. product.html: The product page of our sample website,

where we will add some sample information about products.
3. about.html: The ‘About us’ page of our sample website,

where we will add contact details, etc.

Creating the HTML pages
Navigate to our project folder, and create a new folder
called ‘views’ in it. After that, open Notepad or any of your
favourite code editors, and copy the following HTML code:

 <!doctype html>

<html lang=”en”>

<head>

<meta charset=”UTF-8”>

<title>Sample website using Bootstrap and ExpressJS</title>

<!---CDN Links-->

<script src=”//ajax.googleapis.com/ajax/libs/jquery/1.11.1/

jquery.min.js”></script>

<link rel=”stylesheet” href=”http://maxcdn.bootstrapcdn.com/

bootstrap/3.3.1/css/bootstrap.min.css”>

<script src=”//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/js/

bootstrap.min.js”></script>

<script src=”website.js”></script>

</head>

<body>

<div>

<div>

<nav class=”navbar navbar-inverse” role=”navigation”

style=”padding-left:130px;”>

 <ul class=”nav navbar-nav”>

 <li class=”active”>Home<span class=”sr-

only”>(current)

 Products

 About us

</nav>

</div>

<div class=”jumbotron”> <p>

This is place to put your Sample Content.

</p></div>

</div>

</body>

</html>

Save the above code as index.html in the views folder,
which is present inside the folder named project (i.e., at C:\
project\views>).

As you can see in the above code, we have used
Bootstrap and jQuery files from CDN. Also, we have
included the website.js file, where we are going to write
routing logic for this sample website. In the above code,
we have also used Bootstrap’s Navbar class to provide
navigation to the HTML pages present in the views folder.
Since this is the index page, we have set the class of the
Home link in the navbar as ‘active’.

Figure 1: Sample example running in the browser

Open Source For You!

78 | september 2016 | OpeN sOUrCe FOr YOU | www.OpensourceForU.com www.OpensourceForU.com | OpeN sOUrCe FOr YOU | september 2016 | 79

DevelopersHow To

For product.html also, open Notepad or any of your
favourite code editors and copy the following HTML code:

<html>

<head>

<link rel=”stylesheet” href=”http://maxcdn.bootstrapcdn.com/

bootstrap/3.3.1/css/bootstrap.min.css”>

<script src=”//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/js/

bootstrap.min.js”></script>

</head>

<body>

 <div>

 <div>

 <nav class=”navbar navbar-inverse” role=”navigation”

style=”padding-left:130px;”>

 <ul class=”nav navbar-nav”>

 Home

 <li class=”active”>Products<span

class=”sr-only”>(current)

 About Us

</nav>

</div>

 <div class=”jumbotron”>

 <p>

 Put the product details here!

 </p>

</div>

 </div>

</body>

</html>

As you can see in the above code too, we have
used Bootstrap files from CDN, and we have also used
Bootstrap’s Navbar class to provide navigation to HTML
pages present in the views folder. In this case, since this is
the product page, we have set the class of the Products link
in Navbar as ‘active’.

Similarly, for about.html, open Notepad or any of your
favourite code editors and then copy the following HTML code:

<html>

<head>

<link rel=”stylesheet” href=”http://maxcdn.bootstrapcdn.com/

bootstrap/3.3.1/css/bootstrap.min.css”>

<script src=”//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/js/

bootstrap.min.js”></script>

</head>

<body>

 <div>

 <div>

 <nav class=”navbar navbar-inverse” role=”navigation”

style=”padding-left:130px;”>

 <ul class=”nav navbar-nav”>

 Home

 Prodcts

 <li class=”active”>About Us<span

class=”sr-only”>(current)

</nav>

</div>

 <div class=”jumbotron”>

 <p>

 Put the contact details here!

 </p>

</div>

 </div>

</body>

</html>

Here, too, we have used Bootstrap files from CDN, and
we have used Bootstrap’s Navbar class to provide navigation
to HTML pages present in the views folder. In this case, since
this is the About page, we have set the class of the ‘About Us’
link in the Navbar as ‘active’.

We are now done with the view/presentation part. Let’s
add logic to these Web pages by making use of the Express.js
framework.

Let’s navigate to the root of our project directory, open
the file website.js present there, and delete the code inside it
before copying the following code:

var express = require(‘express’);

var app = express();

var router = express.Router();

var path = __dirname + ‘/views/’;

app.use(‘/’,router);

router.get(‘/’,function(req, res){

 res.sendFile(path + ‘index.html’);

});

router.get(‘/product’,function(req, res){

 res.sendFile(path + ‘product.html’);

});

router.get(‘/about’,function(req, res){

 res.sendFile(path + ‘about.html’);

});

80 | september 2016 | OpeN sOUrCe FOr YOU | www.OpensourceForU.com www.OpensourceForU.com | OpeN sOUrCe FOr YOU | september 2016 | PB

Developers How To

app.use(‘*’,function(req, res){

 res.send(‘Error 404: Not Found!’);

});

app.listen(3000,function(){

 console.log(“Server running at Port 3000”);

});

Here is an explanation of the code snippet given above.
First, we load the dependencies, i.e., the Express.js

framework. We are also loading the router(), which is the
built-in routing service provided by the Express.js framework.

Since we have stored our HTML files in the ‘views’ folder,
we have assigned the path using the __dirname keyword,
which basically points to our current working directory.

Then, we used app.use (‘/’, router) since we are using
routes in the code.

After this, we define the routes: /, /product and /about.
These router definitions have a sendFile() function, which
is a built-in function and is designed to send files to the Web
browser. For example, in our case, in the index.html page, if the
user clicks on any one of the Navbar links, then the router.get()
function provides the file associated with that particular link.

And if the user enters some invalid routes, we can also
display the custom error message by using the * regex pattern
in the app.use() function.

Finally, we declare the port number that listens to
connections using the app.listen() function.

Your project folder must end up with the following
directory structure:

-- node_modules

-- views

 + -- index.html

 + -- product.html

 + -- about.html

package.json

website.js

The above project directory structure has two folders
(named node_modules and views) and two files (named
package.json and website.js). The views folder contains three
HTML files named index.html, product.html and about.html.

Running the website
To execute, run the following command in the project folder:

C:\project>node website.js

The message shown in Figure 2 will be displayed.

Then, load the address http://localhost:3000/ in the
browser to see the output.

You should be able to see your first website created
using Bootstrap and the Express.js framework, as shown in
Figure 3.

By: Aniket Eknath Kudale
The author is an open source enthusiast who has more than
two years of experience as a software engineer at Tibco
Software Inc., Pune. You can reach him at kudale@aniket.co

[1] http://getbootstrap.com/
[2] https://expressjs.com/
[3] https://en.wikipedia.org/wiki/Express.js
[4] http://www.w3schools.com/bootstrap/default.asp

References

Figure 2: Server running and listening for connections on a port

Figure 3: The website we created, running in the browser

This is place to put your Sample Content.

Know the Leading Players
in Every Sector of the
Electronics Industry

Log on to www.electronicsb2b.com and be in touch with the Electronics B2B Fraternity 24x7

B2B INDUSTRY WITH A
ACCESS ELECTRONICS

www.electronicsb2b.com

