
Developers Let’s Try

Mozilla Firefox is a fast, multi-platform Web browser with an extremely large user base.
Firefox is made highly customisable by the use of thousands of add-ons, but there is scope
for more. This tutorial demonstrates how to build a Firefox add-on in a very short time.

This article presents the basics required to create your first
Mozilla Firefox add-on. Mozilla Firefox is considered
one of the best open source Web browsers developed for

Windows, OS X and Linux, by the Mozilla Foundation.
Its key features include:

 � Tabbed browsing
 � Spell-checking
 � Incremental find
 � Live bookmarking
 � Smart bookmarks
 � Location–aware browsing (geo-

location based on Google services)
 � …and many more

Additionally, Firefox allows
third-party developers to add functions
through extensions or add-ons. It also
provides an environment for Web
programmers, where they can use dev
tools, such as the DOM Inspector, the
Error Console or add-ons such as Firebug.

What is an add-on?
An add-on is an installable enhancement for a
particular application. It allows the user to add or
augment extra application features, such as a theme
or any third-party feature. Add-ons are more popular with
Firefox because it retains a high degree of extensibility, giving
individual users the freedom to add the features that they like.

Add-on technologies
The technology behind an add-on may consist of one or more
of the following:
 � XUL (XML user interface language): This is used to

design and define the user interface and the interaction
with the user. A majority of the legacy Mozilla add-ons
are written in XUL. It is one of the best and oldest ways
to create a Mozilla add-on.

 � Mozilla Jetpack: This is an add-on SDK aimed at
speeding up the development time and minimising the
learning period. It is also used to develop add-ons that do
not require users to restart the system.

 � JavaScript: This is the primary language of the Mozilla

browser and is used for writing the logic for add-ons.
 � DOM (Document Object Model): This is used to access or

edit the HTML document that is loaded or to change the
XUL interface in real-time.

 � XPI (Cross-Platform Installer), XPConnect and XPCOM
(Cross-Platform Component Object Model).

That’s the theory part; now let us start with the practical aspects.

Creating an add-on
We are now going to develop a simple yet powerful add-on
for Mozilla Firefox. Let us call it the DuckDuckGo search
add-on, which will let you search on the DuckDuckGo search
engine through the Mozilla Firefox browser, and return the
search results in the browser.

Build Your First Add-on
for Mozilla Firefox in 30 Minutes

44 | May 2015 | OPEN SOURCE FOR yOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPEN SOURCE FOR yOU | May 2015 | 45

DevelopersLet’s Try

Technologies we are going to use:
 � XUL for the UI design
 � JavaScript for the logic
 � DOM to access HTML and the XUL interface

Setting up the development environment
First, we need to set up a file structure for our add-on, so let
us begin by creating a new folder on the computer. C:\DDG_
addon in our case is the add-on folder. Now, inside that new
folder, create a folder called content.

In root directory of our add-on folder, create two new
empty text files, called install.rdf and chrome.manifest, and in
the content folder, create a new empty text file called ui.xul
and an empty JavaScript file logic.js

You should end up with the following directory structure:
 � install.rdf
 � chrome.manifest
 � content\
•	 logic.js
•	 ui.xul

Description
install.rdf contains general information about the add-on.
chrome.manifest registers your add-on’s content with the
Chrome engine.
content is the directory containing XUL and JavaScript files.
logic.js is a JavaScript file containing the logic for the add-on.
ui.xul is the UI design of the add-on.

Creating the install manifest
Open the install.rdf file and copy the following code:

<?xml version=”1.0”?>

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:em=”http://www.mozilla.org/2004/em-rdf#”>

 <Description about=”urn:mozilla:install-manifest”>

 <em:id>sample@example.net</em:id>

 <em:version>1.0</em:version>

 <em:type>2</em:type>

 <!-- Target Application this extension can install into,

 with minimum and maximum supported versions. -->

 <em:targetApplication>

 <Description>

 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>

 <em:minVersion>1.5</em:minVersion>

 <em:maxVersion>35.0.*</em:maxVersion>

 </Description>

 </em:targetApplication>

 <!-- Front End MetaData -->

 <em:name>Duck Duck Go Search</em:name>

 <em:description>A simple yet powerful add-on</

em:description>

 <em:creator>Aniket Kudale</em:creator>

 <em:homepageURL>http://www.aniket.co/</em:homepageURL>

 </Description>

</RDF>

Here, the code is written in XML. The file consists of
general information about the add-on such as its version
number, name, description, the version of the Firefox browser
it supports, the creator of the add-on, etc.
 � sample@example.net is the ID of the extension. It can be

your email address.

 Note: This parameter must be in the format of an
email address.

 � <em:version> 1.0</em:version> specifies the version of
the add-on.

 � <em:type>2</em:type> - the value 2 declares that it is
installing an add-on.

 � {ec8030f7-c20a-464f-9b0e-13a3a9e97384} is
Firefox’s application ID.

 � <em:minVersion>1.5</em:minVersion> specifies the
earliest version of Firefox this add-on will work with.

 � <em:minVersion>35.0.*</em:minVersion> specifies
the minimum version of Firefox that this add-on will
work with. In this case, 35.0.* indicates that the add-
on works with Firefox 35.0 and its subsequent 35.0.x
releases.

Adding the XUL
Firefox’s user interface is written in XUL and JavaScript.
XUL provides the user interface for the Firefox browser
through widgets like toolbars, buttons, menus, etc. We will
be using XUL Overlays for our add-on. They provide a way
of attaching UI widgets to XUL documents at runtime.

Open the ui.xul file and copy the following code:

<?xml version=”1.0”?>

<overlay id=”Scrapper-Overlay”

xmlns=”http://www.mozilla.org/keymaster/gatekeeper/there.

is.only.xul”>

<script type=”application/x-javascript” src=”chrome://DDG_

add-on/content/logic.js” />

<toolbox id=”navigator-toolbox”>

 <toolbar id=”DDGToolbar” toolbarname=”DuckDuckGo Toolbar”

>

 <label value=”DuckDuckGo Search: “/>

 <textbox id=”DDGQuery” cols=”1” size=”20” />

 <toolbarbutton id=”DDGButton” label=”Go” oncommand=”D

uckDuckGoSearch(event)” />

 </toolbar>

</toolbox>

</overlay>

44 | May 2015 | OPEN SOURCE FOR yOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPEN SOURCE FOR yOU | May 2015 | 45

Developers Let’s Try

By: Aniket Eknath Kudale
The author has over one year of experience in developing Mozilla
Firefox add-ons. He is currently a junior software engineer at Tibco
Software Inc., Pune. He can be reached at kudale@aniket.co

[1] http://en.wikipedia.org/wiki/Mozilla
[2] http://en.wikipedia.org/wiki/Firefox
[3] https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL
[4] https://developer.mozilla.org/en-US/Add-ons/Overlay_

Extensions/XUL_School/Getting_Started_with_Firefox_
Extensions

References

The <toolbar> called navigator-toolbox specifies
the merge point within the browser window that we want
to attach to. This specifies a new toolbar just below the
address bar in the browser. It lets you edit this section as
an HTML document, allowing you to add custom widgets
such as label, textbox, buttons, etc. We will also add our
logic.js file as source reference, where we will write the
program logic for our add-on.

Using the above code, we will be creating an XUL based
UI for interacting with our add-on. This XUL interface
consists of a Label, a textbox (to enter a query) and a button
(to trigger the function).

Creating a Chrome manifest for the add-on
Open the file named chrome.manifest that we created in our
add-on directory (DDG_add-on) and then add the following
code to it. This tells Firefox to merge our ui.xul into browser.
xul when browser.xul loads.

content DDG_add-on content/

overlay chrome://browser/content/browser.xul chrome://DDG_

add-on/content/ui.xul

Copy this code and remember that it must be in a single
line. Finally, add the logic behind our add-on.

Adding JavaScript
Open the logic.js file located at our content directory in our
add-on directory, and add the following code:

function DuckDuckGoSearch(event){

 var query = document.getElementById(“DDGQuery”).value;

 window._content.document.location = “http://www.

duckduckgo.com/?q=” + encodeURI(query);

}

The above function gets the value of the element with
the identity as DDGQuery, which we declared in our ui.xul
file, and stores it in a variable named query. Now, using
DOM, just append the extracted value with the URL of
the DuckDuckGo search engine to load the page with the
query entered by the user.

Now, let us make our add-on ready for deployment.

Creating a package for our add-on
Add-ons are generally packaged in zip files, with an XPI
(Cross-Platform Installer) file extension. So, zip up all the
files of the add-on folder. (Note: Zip the files in the DDG_
add-on folder, in our case: content folder, install.rdf and
chrome.manifest. When you open the zip file, you must see
these files.) You can do this easily in Windows 7; just select
all the files and sub-folders from our add-on (DDG_add-
on) folder, right click and select Send To -> “Compressed
(Zipped) Folder”. A .zip file, DDG_addon.zip, will be

created. Just rename it as DDG_addon.xpi and you are ready
to run your first Mozilla Firefox add-on.

Running the add-on
Open the Mozilla Firefox browser and just drag the add-on
file into the browser. When you do this, the add-on installer
will open up; select the add-on and click Install. After
installation, restart the Firefox browser.

Now, you will see our add-on’s toolbar under the address
bar in the browser, as shown in Figure 1.

You can test the add-on by entering any text into the text
field provided under the address bar and clicking the Go button.
For example, we tested the add-on by entering the text ‘Open
Source For You’, and clicked the Go button. DuckDuckGo
search engine results for ‘Open Source For You’ were displayed
in the browser, as shown in Figure 2.

Figure 1: Our add-on running in the browser

Figure 2: Add-on providing results for the entered text

46 | May 2015 | OPEN SOURCE FOR yOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPEN SOURCE FOR yOU | May 2015 | PB

