
30  |  October 2017  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Admin How To

PhaserJS is a popular, free and open source HTML5
framework for game development on mobile and
desktop browser platforms. It uses HTML5 Canvas

for rendering and also WebGL if the device or browser
supports it. It is one of the most popular and easy-to-learn
game development frameworks and is based on pure Web
technologies such as HTML, CSS and JavaScript. With over
15,000 stars and almost 5000 forks at the time of writing
this article, it is also one of the most popular and actively
maintained game frameworks on GitHub.

Thousands of developers all around the world use Phaser,
as it has some great features which are listed below.

Supports JavaScript and TypeScript: PhaserJS supports
both JavaScript and TypeScript; so either of these languages
can be used to develop games.

Uses WebGL and Canvas: PhaserJS uses both WebGL
and Canvas internally, and has the ability to switch between
them based on browser support. This allows fast and robust
rendering across various mobile and desktop platforms.

Optimised for mobile browsers: PhaserJS was built
keeping the mobile Web browser as the target platform, so it is
highly optimised for mobile as well as for desktop browsers.

Built-in physics engines: PhaserJS has three built-in
physics engines — Arcade Physics, a lightweight engine
useful for developing arcade style games; Ninja Physics for

This tutorial will help you build a 2D platform arcade style game, using the
PhaserJS framework, within a few minutes.

advanced tile support; and p2.js, which supports character
rigging, constraints and advanced polygon support.

Assets preloader: Assets, images, sprites, sheets, sounds,
tilemaps, JSON data, XML, etc, are loaded with ease, parsed
and handled automatically—to be used in games and stored in
the global cache.

Particles, animation and sprites: PhaserJS has a built-in
particle system, which allows developers to easily create cool
particle effects such as rain, fire, snow and water. It supports
Flash CS6/CC JSON files to create animation for sprites.

Input support: It supports multi-touch, mouse and
keyboard. It also allows the user to code custom gesture control.

Plugin system: PhaserJS allows developers to
create their own plugins for their games and share them
with the community.

Games created using PhaserJS depend on and require
a modern browser that supports the Canvas tag, which
includes Chrome, Internet Explorer 9+, Firefox, Safari and
Opera. It also works on mobile Web browsers such as stock
Android 2.x browsers and later, and Mobile Safari for iOS5
and later versions.

Tip: The PhaserJS framework is open source and the
source code of the framework is available on GitHub.
Developers/programmers are encouraged to participate and
contribute to the project.

Using PhaserJS to Speed Up
2D Game Development

Admin

www.OpenSourceForU.com  |  OPEN SOURCE For You  |  October 2017  |  31

AdminHow To

Installing the prerequisites
Before we start developing our game using PhaserJS, we
need to install Node.js, as the PhaserJS framework is also
distributed as an npm package and this makes it easy to set up
the project structures to develop games.

 Note: It is assumed that you have some basic
knowledge of Web technologies like HTML, CSS
and JavaScript. If you don’t, W3Schools (http://www.
w3schools.com/) is a good place to start. The site has some
great tutorials for Web technologies that are easy to follow.

Installing Node.js

Download and install Node.js (https://nodejs.org/).
PhaserJS is also distributed as an npm package, so we will use
Node and npm to install the PhaserJS framework.

Installing Phaser JS

We can install PhaserJS as a node package. Just
run the following command in the terminal or at the
command prompt:

npm install phaser

This command will install the PhaserJS framework.

Installing an HTTP server
To run the PhaserJS project, we need to install an HTTP
server. Run the following command in a terminal or at the
command prompt:

 npm unstall -g http-server

This will install an HTTP server as a global module.

Testing if everything is installed properly
Create a folder for your project, and change directory to it.
Run the following commands at the command prompt or in
the terminal:

mkdir my-game

cd my-game

Initialise the folder using the following npm command:

npm init –y

This will create a package.json manifest file with vital
default information about the project, and will add the
necessary node modules.

Now create an index.html file and add the following
code to it.

<!doctype html>

<head>

 <title>My Game</title>

 <script type=”text/javascript” src=”node_modules/phaser/

build/phaser.min.js”></script>

</head>

<body>

 <div id=”helloWorld”></div>

</body>

<script>

var game = new Phaser.Game(640, 480, Phaser.AUTO,

‘helloWorld’, {

 create: create

});

function create() {

 var text = “OPEN SOURCE FOR YOU”;

 var style = {

 font: “45px “,

 fill: “#ff0000”,

 align: “center”

 };

 var t = game.add.text(game.world.centerX, 240, text,

style);

 t.anchor.set(0.5);

}

</script>

</html>

Finally, start the server by running the following
command at the command prompt:

hs

The hs command will start the HTTP server. Now, load
http://localhost:8080 in your browser to run the project. If
you see the output screen shown in Figure 1, then you have
successfully installed all the dependencies required.

Figure 1: The my-game project running in the browser

32  |  October 2017  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Admin How To

Creating a simple 2D platform game
Now we are going to create a simple 2D platform game, that
has a character who collects rings and scores points. The game
consists of walls, on which the character can jump in order
to collect the rings and score points. The player will use the
arrows on the keyboard to control the character’s movements

I have created some assets, like the background image,
game sprites, etc. You can download these from http://www.
aniket.co/labs/phaser/assets.zip. We are going to use these to
develop this game. This zip file consists of four asset files —
the sky, the player, the platform and the ring that will be used
for our game.

Create a new folder that we can call ring-collector. Move
into that directory.

mkdir ring-collector

cd ring-collector

Initialise the folder using npm, and install PhaserJS again
for this folder as well. It will pull all the necessary node_
modules. Run the following commands in a terminal or at the
command prompt:

npm init -y

npm install phaser

Create a folder called assets and extract the downloaded
assets.zip into it. Create an index.html file, and add the
following code into it:

<!doctype html>

<head>

 <title>Ring Collector</title>

	 <script type=”text/javascript” src=”node_modules/phaser/

build/phaser.min.js”></script>

</head>

<body>

<script type=”text/javascript” src=”game.js”>

</script>

</body>

</html>

In the index.html file, load the PhaserJS framework and
our game’s logic.

Now create a file called game.js in the same folder, and add
the following code. I have also added comments for each line of
code to explain what it actually does and why we are using it.

let game = new Phaser.Game(800, 600, Phaser.AUTO, ‘’, {

preload: preload, create: create, update: update });

function preload() {

	 //Loading assets such as background image, object image,

game sprites.

 game.load.image(‘sky’, ‘assets/sky.png’);

 game.load.image(‘ground’, ‘assets/platform.png’);

 game.load.image(‘ring’, ‘assets/ring.png’);

 game.load.image(‘player’, ‘assets/player.png’);

}

// Variables

let player;

let platforms;

let cursors;

let rings;

let points = 0;

let pointsText;

function create() {

	 // Since we are building an arcade style game, we enable

arcade physics system using following function

 game.physics.startSystem(Phaser.Physics.ARCADE);

 // This function will add ‘sky’ asset as background to

our canvas.

 game.add.sprite(0, 0, ‘sky’);

 // The platforms group contains the ground and the 3

ledges we can jump on

 platforms = game.add.group();

 // Enable physics for any object that is created in this

group

 platforms.enableBody = true;

 // Here we create the ground.

 let ground = platforms.create(0, game.world.height - 64,

‘ground’);

 // Scale it to fit the width of the game (the original

sprite is 400x32 in size)

 ground.scale.setTo(2, 2);

 // This stops it from falling away when you jump on it

 ground.body.immovable = true;

 // Now let’s create three ledges, at 3 different

locations

 let ledge = platforms.create(400, 400, ‘ground’);

 ledge.body.immovable = true;

 ledge = platforms.create(-150, 250, ‘ground’);

 ledge.body.immovable = true;

	

 ledge = platforms.create(400, 150, ‘ground’);

www.OpenSourceForU.com  |  OPEN SOURCE For You  |  October 2017  |  33

AdminHow To

 ledge.body.immovable = true;

 // The player and its settings, such as height and width

 player = game.add.sprite(32, game.world.height - 150,

‘player’);

 // Enable physics on the player

 game.physics.arcade.enable(player);

 // Player physics properties, such as bounce and bounding

it to canvas only so it does not go off screen

 player.body.bounce.y = 0.2;

 player.body.gravity.y = 300;

 player.body.collideWorldBounds = true;

 // Adding some rings to collect

 rings = game.add.group();

 // We will also enable physics for any ring that is

created in this group

 rings.enableBody = true;

 // Here we’ll create 10 of them evenly spaced apart

 for (let i = 0; i < 10; i++)

 {

 // Create a ring inside of the ‘rings’ group

 let ring = rings.create(i * 70, 0, ‘ring’);

 // Add some gravity

 ring.body.gravity.y = 300;

 }

 // The pointsText displays current score in top right

corner of canvas

 pointsText = game.add.text(624, 16, ‘Points: 0’, {

fontSize: ‘32px’, fill: ‘#000’ });

 // Using keyboard controls

 cursors = game.input.keyboard.createCursorKeys();

}

function update() {

 // Collide the player and the rings with the platforms

 game.physics.arcade.collide(player, platforms);

 game.physics.arcade.collide(rings, platforms);

 // Checks if the player overlaps with any of the rings,

if he does call the collectRing function

 game.physics.arcade.overlap(player, rings, collectRing,

null, this);

 // Reset the players velocity (movement), if no key is

pressed

 player.body.velocity.x = 0;

	

	 // If left or right key is pressed

 if (cursors.left.isDown)

 {

 // Move left

 player.body.velocity.x = -150;

 }

 else if (cursors.right.isDown)

 {

 // Move right

 player.body.velocity.x = 150;

 }

 else

 {

 // Dont move

 player.animations.stop();

 player.frame = 4;

 }

 // Allows the players to jump only if they are touching

the ground.

 if (cursors.up.isDown && player.body.touching.down)

 {

 player.body.velocity.y = -350;

 }

}

function collectRing (player, ring) {

 // Removes the ring from the screen, when player touches

the ring

 ring.kill();

 // Add and update the score points

 points = points + 10;

 pointsText.text = ‘Points: ‘ + points;

}

Here, on the first line, we have created an instance of a
Phaser.Game object and assigned it to the game variable.
The first two parameters in the Phaser.Game function are the
width and height of the canvas that Phaser creates. The third
parameter can be Phaser.CANVAS, Phaser.WEBGL or Phaser.
AUTO, which are for rendering the setting you want to use for
your game. I recommend that you use Phaser.AUTO, which
will automatically try to use either WebGL or Canvas, based
on whichever the browser supports. The fourth parameter is
an empty string. Here, you can give the ID of a DOM element
where you would like to add the canvas element on the page.

34  |  October 2017  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Admin How To

We have left it blank, so by default it will be appended to the
body element. The last parameter is an object that consists of
three references to Phaser’s essential functions.

The essential functions are preload(), create() and update().
preload(): This is used to load the assets needed for our

game. PhaserJS will automatically look for this function when
it starts, and load any asset defined within it.

create(): This function is used to create the game scene.
Here, we add the assets loaded such as the background image,
platform, player/characters and other game sprites.

update(): This function is called by the core game loop
in every frame. It helps to check what is happening in every
frame, like if there is a collision between the player and
object, score updates, etc.

Finally, you should end up with the following directory
structure:

assets/

•	 platform.png

•	 player.png

•	 ring.png

•	 sky.png

node_modules/

•	 phaser/

game.js

index.html

package.json

Now that we have added the code, let us start a server
and see the final outcome. Run the following command in the
same directory:

hs

The hs command will start the HTTP server. Now, load

http://localhost:8080 in your browser to run the project.
If you see the output screen shown in Figure 2, then you
have successfully created a simple 2D platform arcade style
game. You can use the arrows on the keyboard to control the
character and collect rings.

I have uploaded this sample project to my GitHub
repository at https://github.com/aniketkudale/ring-collector.
You can download it for reference.

You will also find various game physics examples and
techniques at https://phaser.io/examples, which you can use in
your game to make it more fun-filled.

Figure 2: The game we developed is launched in the browser

[1] 	 https://phaser.io/
[2] 	 https://photonstorm.github.io/phaser-ce/

Reference

By: Aniket Eknath Kudale
The author is presently employed at TIBCO Software Inc., Pune,
and has more than three years’ of work experience. His interests
include Web technologies, computer vision and security. You can
reach him at kudale@aniket.co

