
56  |  May 2020  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Focus

Building a Facial Expression
Recognition App
Using TensorFlow.js

T ensorFlow is a free and open
source software library for
data flow and differentiable
programming across a

range of tasks. It is a symbolic math
library, also used for machine learning
applications such as deep learning and
neural networks. It is used by Google,
both in research and in production. It
was developed by the Google Brain team
for internal use only. On November 9,
2015, it was released under the Apache
Licence 2.0 for public use.

TensorFlow can run on multiple
CPUs and GPUs (with optional CUDA
and SYCL extensions for general
purpose computing on GPUs). It is
available on 64-bit Linux, MacOS,
Windows and mobile computing
platforms including Android and iOS.
Its flexible architecture allows for
the easy deployment of computation
across a variety of platforms (CPUs,
GPUs and TPUs), and from desktops
to clusters of servers, as well as mobile
and edge devices.

TensorFlow provides stable APIs
for Python and C, without the API
backward-compatibility guarantee for
C++, Go, Java, JavaScript and Swift.

TensorFlow.js
TensorFlow.js is an open source hardware
accelerated JavaScript library for training
and deploying machine learning models.

Features
�� 	Develops machine learning (ML) in

the Web browser

Let’s learn how to build a face expression recognition app
on the TensorFlow.js framework.

www.OpenSourceForU.com  |  OPEN SOURCE For You  | May 2020  |  57

Focus

•	 	Uses flexible and intuitive
APIs in a Web browser to build
models from scratch with the
aid of low-level JavaScript
linear algebra library or the
high-level layers API.

�� 	Develops ML in Node.js
•	 	Using Node.js runtime, we can

execute native TensorFlow with
the same TensorFlow.js API

�� 	Runs existing models
•	 	With TensorFlow.js model

converters, we can run pre-
existing TensorFlow models
right in the browser

�� 	Retrains existing models
•	 	Allows retraining of the pre-

existing ML models using
sensor data connected to the
browser or other client-side data

With over 13,000 stars and almost
1,100 forks at the time of the writing
this article, it is also one of the most
popular and actively maintained ML
frameworks on GitHub.

 Note: The TensorFlow.js
framework is open source and the
source code of the framework is
available on GitHub. Developers/
programmers are encouraged
to participate and contribute to
the project.

face-api.js
face-api.js is a JavaScript module
that implements convolutional neural
networking to solutions in the face
detection and recognition space as
well as for facial landmarks. face-api.
js leverages TensorFlow.js and is
optimised for the desktop and mobile
Web. With over 9,400 stars and 1,700
forks, it is also one of the popular face
detection and face recognition open
source JavaScript APIs on GitHub.

There are several pre-trained
models available with face-api.
js, including face detection, facial
landmark detection, face recognition,
facial expression recognition, age
estimation and gender recognition. We

will use some of them in our app.

Installing the prerequisites
Before we start developing the app
using TensorFlow.js or face-api.
js, we need to install Node.js as the
TensorFlow.js and the face-api.js
framework, which we are going to use
to detect a face and its expressions. It is
also distributed as an npm package, and
this makes it easy to set up the project’s
structures to develop ML apps.

 Note: It is assumed that you
have some basic knowledge of Web
technologies like HTML, CSS and
JavaScript. If you don’t, W3Schools
(http://www.w3schools.com/) is a
good place to start. The site has some
great tutorials for Web technologies,
and they are easy to follow.

Installing Node.js
Download and install Node.js (https://
nodejs.org/). TensorFlow.js and
face-api.js are also distributed as npm
packages, so we will use Node and npm
to install the TensorFlow.js and face-
api.js frameworks.

Creating the app folder
Create a folder for your project, and
change the directory to it. Run the
following commands at the prompt or
in the terminal:

mkdir face-detect

cd face-detect

Initialise the folder using the
following npm command:

npm init -y

This will create a package.json
manifest file with important default
information about the project, and will
add the necessary node modules.

Installing face-api.js
We can install face-api.js as a node
package in the project folder. Just run
the following command in the terminal
or at the command prompt:

npm install face-api.js --save-dev

Installing HTTP server
To run the project, we need to install
an HTTP server. Run the following
command in a terminal or at the
command prompt:

npm install http-server --save-dev

Setting up the folder structure
for the project
Create the following files and folders,
some of which will have been
automatically created by the commands
run above.
�� 	index.html – In this folder, we will

create the UI of the app.
�� 	script.js – In this folder, we will add

the logic of the app.
�� 	models – In this folder, we will

add pre-trained models for face

Figure 1: Project file structure

58  |  May 2020  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Focus

detection and face expression
recognition. You should end up with
the file/folder structure shown in
Figure 1.

Testing if everything
is installed properly
Now open the index.html file and add
the following code to it:

<!doctype html>

<head>

 <title>Face Expression Recognition</

title>

 <script type=”text/javascript”

src=”node_modules/face-api.js/dist/face-

api.min.js”></script>

</head>

<body>

 <h1>Hello World</h1>

</body>

</html>

Finally, start the server by running
the following command at the prompt:

http-server ./

This command will start the HTTP
server. Now, load http://127.0.0.1:8080/
index.html in your browser to run the
project. If you see the output screen shown
in Figure 2, then you have successfully
installed all the dependencies required.

Creating the app
Now, let’s create a facial expression
recognition app, which will detect the
faces and expressions of the user. We are
going to use pre-trained models to detect
the face and recognise expressions. You

can download these from http://www.
aniket.co/labs/face/models.zip. We will
use these models in the app. You need
to extract these into the ‘Models’ folder
inside your project directory.

 Note: A webcam is needed for
this project, as we are detecting
the face live from video. So it is
recommended that you try this
project on a laptop with a webcam.

Now, open index.html and copy the
following HTML code:

<!DOCTYPE html>

<html lang=”en”>

<head>

 <meta charset=”UTF-8”>

 <meta name=”viewport”

content=”width=device-width, initial-

scale=1.0”>

 <meta http-equiv=”X-UA-Compatible”

content=”ie=edge”>

 <title>Face Expression Recognition</

title>

 <script defer src=”node_modules/

face-api.js/dist/face-api.min.js”></

script>

 <script defer src=”script.js”></

script>

 <style>

 body {

 margin: 0;

 padding: 0;

 width: 100vw;

 height: 100vh;

 display: flex;

 justify-content: centre

 align-items: centre

 }

 canvas {

 position: absolute;

 }

 </style>

</head>

<body>

 <video id=”video” width=”720”

height=”560” autoplay muted></video>

</body>

</html>

As you can see in the HTML code
above, we have used the <script> tag
to import face-api and script.js files. In
the <style> tag we have added some
styling to the elements; basically, we
have centred the UI. And finally, we
have used the <video> tag, which will
display that a face has been detected and
recognised via webcam.

 Note: We have added auto-play
and muted the attribute to the video
tag (since we don’t need audio)
with this webcam, which will start
capturing videos as soon as the app
is launched.

Now open script.js and add the
following JavaScript code:

const video = document.

getElementById(‘video’)

Promise.all([

 faceapi.nets.tinyFaceDetector.

loadFromUri(‘/models’),

 faceapi.nets.faceLandmark68Net.

loadFromUri(‘/models’),

 faceapi.nets.faceRecognitionNet.

loadFromUri(‘/models’),

 faceapi.nets.faceExpressionNet.

loadFromUri(‘/models’)

]).then(startVideo)

function startVideo() {

 navigator.getUserMedia({ video: {}

},

 stream => video.srcObject =

stream,

 err => console.error(err)

)

}

video.addEventListener(‘play’, () => {

 const canvas = faceapi.

createCanvasFromMedia(video)

 document.body.append(canvas)

 const displaySize = { width: video.

width, height: video.height }

Figure 2: The project running in the browser

www.OpenSourceForU.com  |  OPEN SOURCE For You  | May 2020  |  59

Focus

The author works as a senior member
of the technical staff at TIBCO Software
Inc., Pune, and has more than five
years of experience in the industry. He
is interested in Web technologies, and
computer vision and security.

 By: Aniket Eknath Kudale

[1]	 https://www.tensorflow.org/
[2] 	 https://www.tensorflow.org/js
[3] 	 https://www.npmjs.com/package/

face-api.js

 	References

 faceapi.matchDimensions(canvas,

displaySize)

 setInterval(async() => {

 const detections = await

faceapi.detectAllFaces(video, new

faceapi.TinyFaceDetectorOptions()).

withFaceLandmarks().

withFaceExpressions()

 const resizedDetections =

faceapi.resizeResults(detections,

displaySize)

 canvas.getContext(‘2d’).

clearRect(0, 0, canvas.width, canvas.

height)

 faceapi.draw.

drawDetections(canvas,

resizedDetections)

 faceapi.draw.

drawFaceLandmarks(canvas,

resizedDetections)

 faceapi.draw.

drawFaceExpressions(canvas,

resizedDetections)

 }, 100)

})

In the above code, we load the pre-
trained models using face-api. We are
using four models: tinyFaceDetector,
faceLandmark68Net, faceRecognitionNet
and faceExpressionNet. Once these
models are loaded, we call the
startVideo() function, which starts
capturing video from the webcam. The
navigator.getUserMedia API is used to
capture a video stream which we then
assign to video.srcObject. Then we add
an event listener to the video tag, which
is fired when the video gets played. Using
face-api, we get the video, detect the
face, facial landmark and expression. We
draw a rectangle around the detected face
and facial landmark to denote eyebrows,
eyes, nose and lips, and display the facial
expressions of the user with text, under
the drawn rectangle, with a detection
accuracy score.

Testing the app
Now that we have added the code, let
us start the server and test the final
outcome. Run the following command

in the same directory:

http-server ./

This command will start the HTTP
server. Now, load http://127.0.0.1:8080/
index.html in your browser to run the
project. If you see the output screen
as shown in Figure 3, then you have
successfully created a facial expression
recognition app. You can now try
detecting different facial expressions like
happy, sad or angry.

As you can see in Figure 4, my
face shows a happy expression. It
detected and recognised my face and the
expression I made, and displayed it with a
rectangle and text in the webcam video.

I have uploaded this sample

Figure 3: Face and expression getting detected and recognised

Figure 4: Face and happy expression getting detected and recognised

project to my GitHub repository at
https://github.com/aniketkudale/
face-expression-recognition. You may
download it for reference.

